Skip to contents

Validate the contents of a submitted model data file

Usage

validate_model_data(
  hub_path,
  file_path,
  round_id_col = NULL,
  validations_cfg_path = NULL
)

Arguments

hub_path

Either a character string path to a local Modeling Hub directory or an object of class <SubTreeFileSystem> created using functions s3_bucket() or gs_bucket() by providing a string S3 or GCS bucket name or path to a Modeling Hub directory stored in the cloud. For more details consult the Using cloud storage (S3, GCS) in the arrow package. The hub must be fully configured with valid admin.json and tasks.json files within the hub-config directory.

file_path

character string. Path to the file being validated relative to the hub's model-output directory.

round_id_col

Character string. The name of the column containing round_ids. Usually, the value of round property round_id in hub tasks.json config file.

validations_cfg_path

Path to validations.yml file. If NULL defaults to hub-config/validations.yml.

Value

An object of class hub_validations. Each named element contains a hub_check class object reflecting the result of a given check. Function will return early if a check returns an error.

For more details on the structure of <hub_validations> objects, including how to access more information on individual checks, see article on <hub_validations> S3 class objects.

Details

Details of checks performed by validate_model_data()

Name Check Early return Fail output Extra info
file_read File can be read without errors TRUE check_error
valid_round_id_col Round ID var from config exists in data column names. Skipped if `round_id_from_var` is FALSE in config. FALSE check_failure
unique_round_id Round ID column contains a single unique round ID. Skipped if `round_id_from_var` is FALSE in config. TRUE check_error
match_round_id Round ID from file contents matches round ID from file name. Skipped if `round_id_from_var` is FALSE in config. TRUE check_error
colnames File column names match expected column names for round (i.e. task ID names + hub standard column names) TRUE check_error
col_types File column types match expected column types from config. Mainly applicable to parquet & arrow files. FALSE check_failure
valid_vals Columns (excluding `value` column) contain valid combinations of task ID / output type / output type ID values TRUE check_error error_tbl: table of invalid task ID/output type/output type ID value combinations
rows_unique Columns (excluding `value` column) contain unique combinations of task ID / output type / output type ID values FALSE check_failure
req_vals Columns (excluding `value` column) contain all required combinations of task ID / output type / output type ID values FALSE check_failure missing_df: table of missing task ID/output type/output type ID value combinations
value_col_valid Values in `value` column are coercible to data type configured for each output type FALSE check_failure
value_col_non_desc Values in `value` column are non-decreasing as output_type_ids increase for all unique task ID /output type value combinations. Applies to `quantile` or `cdf` output types only FALSE check_failure error_tbl: table of rows affected
value_col_sum1 Values in the `value` column of `pmf` output type data for each unique task ID combination sum to 1. FALSE check_failure error_tbl: table of rows affected

Examples

hub_path <- system.file("testhubs/simple", package = "hubValidations")
file_path <- "team1-goodmodel/2022-10-08-team1-goodmodel.csv"
validate_model_data(hub_path, file_path)
#> ::notice ::✔ 2022-10-08-team1-goodmodel.csv: File could be read successfully.%0A✔ 2022-10-08-team1-goodmodel.csv: `round_id_col` name is valid.%0A✔ 2022-10-08-team1-goodmodel.csv: `round_id` column "origin_date" contains a%0A  single, unique round ID value.%0A✔ 2022-10-08-team1-goodmodel.csv: All `round_id_col` "origin_date" values match%0A  submission `round_id` from file name.%0A✔ 2022-10-08-team1-goodmodel.csv: Column names are consistent with expected%0A  round task IDs and std column names.%0A✔ 2022-10-08-team1-goodmodel.csv: Column data types match hub schema.%0A✔ 2022-10-08-team1-goodmodel.csv: `tbl` contains valid values/value%0A  combinations.%0A✔ 2022-10-08-team1-goodmodel.csv: All combinations of task ID%0A  column/`output_type`/`output_type_id` values are unique.%0A✔ 2022-10-08-team1-goodmodel.csv: Required task ID/output type/output type ID%0A  combinations all present.%0A✔ 2022-10-08-team1-goodmodel.csv: Values in column `value` all valid with%0A  respect to modeling task config.%0A✔ 2022-10-08-team1-goodmodel.csv: Values in `value` column are non-decreasing%0A  as output_type_ids increase for all unique task ID value/output type%0A  combinations of quantile or cdf output types.%0Aℹ 2022-10-08-team1-goodmodel.csv: No pmf output types to check for sum of 1.%0A  Check skipped.